45 research outputs found

    Machine-learning-based evaluation of intratumoral heterogeneity and tumor-stroma interface for clinical guidance

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Laurinavicius, A., Rasmusson, A., Plancoulaine, B., Shribak, M., & Levenson, R. Machine-learning-based evaluation of intratumoral heterogeneity and tumor-stroma interface for clinical guidance. American Journal of Pathology, 191(10), (2021): 1724–1731, https://doi.org/10.1016/j.ajpath.2021.04.008.Assessment of intratumoral heterogeneity and tumor-host interaction within the tumor microenvironment is becoming increasingly important for innovative cancer therapy decisions because of the unique information it can generate about the state of the disease. However, its assessment and quantification are limited by ambiguous definitions of the tumor-host interface and by human cognitive capacity in current pathology practice. Advances in machine learning and artificial intelligence have opened the field of digital pathology to novel tissue image analytics and feature extraction for generation of high-capacity computational disease management models. A particular benefit is expected from machine-learning applications that can perform extraction and quantification of subvisual features of both intratumoral heterogeneity and tumor microenvironment aspects. These methods generate information about cancer cell subpopulation heterogeneity, potential tumor-host interactions, and tissue microarchitecture, derived from morphologically resolved content using both explicit and implicit features. Several studies have achieved promising diagnostic, prognostic, and predictive artificial intelligence models that often outperform current clinical and pathology criteria. However, further effort is needed for clinical adoption of such methods through development of standardizable high-capacity workflows and proper validation studies.Supported by the European Social Fund grant 09.3.3-LMT-K-712

    Efficient, Unbiased Quality Assurance Of Automated Tissue Analysis Applicable To Daily Pathology Practice

    Get PDF
    Introduction/ Background Quantification of tissue biomarkers is increasingly demanded for diagnosis and is commonly performed by expert pathologists using microscopy of stained tissue at high magnification. This manual scoring is a reasonably fast, supervised procedure, but it suffers from inter- and intra-observer differences due to a) differences in selection of regions of interest, b) differences in quantity estimation, c) intra-tissue variability of biomarker expression. Computers and whole slide microscopy scanners have made it feasible to perform high-capacity analysis of high resolution images of tissue. Image analysis (IA) enables better reproducibility, but conversely, the unsupervised analysis introduces challenges regarding accuracy. Furthermore, borderline cases will always have to be rigorously inspected by pathologists. Many IA evaluation methods exist, but for pathology, a supervised comparison of experimental segmentation to an appropriately obtained standard criterion is the optimal strategy. The production of standard criterion necessitates evaluation of whole slide images to eliminate any possible region sampling bias while inter- and intra- observer bias can only be minimized by replacing any manual estimates by objective measurements. A logical step is thus to change the task of the pathologist from quantity estimation to verifying the output an automated procedure reports. Still, verification of entire tissue slides is in daily pathology practice too time-consuming. To minimize the workload pathology is turning to stereological methods which aim to efficiently quantify matter unbiasedly and have been proved useful for supervised validation of automated analysis for Ki67 scoring of breast cancer. However, the workload still needs to be reduced to a level comparable to the manual scoring procedure. Aims We aim to enable high accuracy, objective evaluation of automated image analysis with a workload and workflow feasible for daily pathology practice. This regards both production of reference data for image analysis tool calibration and continuous quality control inspection of borderline cases. Methods This study investigates proportionate sampling, a very efficient stereological sampling scheme utilizing weighted sampling of regions of automated image analysis for manual evaluation of automated IA. The sampling of regions to be inspected by a pathologist draws upon the IA to assign probability weights to all regions. This results in a highly efficient, unbiased sampling and quality assurance estimate for the automated image analysis. Results Presented here is proof-of-concept of an efficient, unbiased image analysis evaluation methodology. The task of the pathologist is changed from quantity estimation to instead annotate discrepancies between the output from the IA and the tissue in a few sampled regions. From the annotations an unbiased quality assurance estimate of the IA can be estimated including levels of accuracy obtainable and expected workloads. This confirms that the stereological proportionate sampling enables manual verification of automated whole slide image analysis for unbiased reference dataset creation and quality control inspection in borderline cases. Furthermore, the methodology is easily integrated into both image analysis platforms for production of reference data sets and laboratory information systems for daily pathology practices.

    Levels of CD4+ CD25+ T regulatory cells in bronchial mucosa and peripheral blood of chronic obstructive pulmonary disease indicate involvement of autoimmunity mechanisms

    Get PDF
    Introduction: Many theories have been proposed to explain pathogenesis of COPD; however, remains unclear why the majority of smokers (~80%) do not develop COPD, or only develop a mild disease. To explore if COPD has an autoimmune component, the role of T regulatory lymphocytes (Tregs) in the lung tissue of COPD patients is of crucial importance.Material and methods: Bronchial tissue biopsy samples were prospectively collected from 64 patients (39 COPD and 25 controls — 15 smokers and 10 non-smokers). The patients with COPD were subdivided into mild/moderate (GOLD stage I−II) and severe/very severe (GOLD stage III−IV) groups. Digital image analysis was performed to estimate densities of CD4+ CD25+ cell infiltrates in double immunohistochemistry slides of the biopsy samples. Blood samples were collected from 42 patients (23COPD and 19 controls) and tested for CD3+ CD4+ CD25+ bright lymphocytes by flow cytometry.Results: The number of intraepithelial CD4+ CD25+ lymphocytes mm-2 epithelium was significantly lower in the severe/very severe COPD (GOLD III–IV) group as well as in the control non-smokers (NS) group (p < 0,0001). Likewise, the absolute number of Treg (CD3+ CD4+ CD25+ bright) cells in the peripheral blood samples was significantly different between the four groups (p = 0.032). The lowest quantity of Treg cells was detected in the severe/very severe COPD and healthy non-smokers groups.Conclusion: Our findings suggest that severe COPD is associated with lower levels of Tregs in the blood and bronchial mucosa, while higher Tregs levels in the smokers without COPD indicate potential protective effect of Tregs against developing COPD

    Unilateral Hydronephrosis and Renal Damage after Acute Leukemia

    Get PDF
    A 14-year-old boy presented with asymptomatic right hydronephrosis detected on routine yearly ultrasound examination. Previously, he had at least two normal renal ultrasonograms, 4 years after remission of acute myeloblastic leukemia, treated by AML-BFM-93 protocol. A function of the right kidney and no damage on the left was confirmed by a DMSA scan. Right retroperitoneoscopic nephrectomy revealed 3 renal arteries with the lower pole artery lying on the pelviureteric junction. Histologically chronic tubulointerstitial nephritis was detected. In the pathogenesis of this severe unilateral renal damage, we suspect the exacerbation of deleterious effects of cytostatic therapy on kidneys with intermittent hydronephrosis

    Digital pathology evaluation of complement C4d component deposition in the kidney allograft biopsies is a useful tool to improve reproducibility of the scoring

    Get PDF
    Complement C4d component deposition in kidney allograft biopsies is an established marker of antibody-mediated rejection. In the Banff 07 classification of renal allograft pathology, semi-quantitative evaluation of the proportion of C4d-positive peritubular capilaries (PTC) is used. We aimed to explore the potential of digital pathology tools to obtain quantitative and reproducible measure of C4d deposition in the renal allograft tissue

    Immuno-Interface Score to Predict Outcome in Colorectal Cancer Independent of Microsatellite Instability Status

    Get PDF
    Tumor-associated immune cells have been shown to predict patient outcome in colorectal (CRC) and other cancers. Spatial digital image analysis-based cell quantification increases the informative power delivered by tumor microenvironment features and leads to new prognostic scoring systems. In this study we evaluated the intratumoral density of immunohistochemically stained CD8, CD20 and CD68 cells in 87 cases of CRC (48 were microsatellite stable, MSS, and 39 had microsatellite instability, MSI) in both the intratumoral tumor tissue and within the tumor-stroma interface zone (IZ) which was extracted by a previously developed unbiased hexagonal grid analytics method. Indicators of immune-cell gradients across the extracted IZ were computed and explored along with absolute cell densities, clinicopathological and molecular data, including gene mutation (BRAF, KRAS, PIK3CA) and MSI status. Multiple regression modeling identified (p < 0.0001) three independent prognostic factors: CD8+ and CD20+ Immunogradient indicators, that reflect cell migration towards the tumor, were associated with improved patient survival, while the infiltrative tumor growth pattern was linked to worse patient outcome. These features were combined into CD8-CD20 Immunogradient and immuno-interface scores which outperformed both tumor-node-metastasis (TNM) staging and molecular characteristics, and importantly, revealed high prognostic value both in MSS and MSI CRCs

    Impact of tissue sampling on accuracy of Ki67 immunohistochemistry evaluation in breast cancer

    Get PDF
    Background: Gene expression studies have identified molecular subtypes of breast cancer with implications to chemotherapy recommendations. For distinction of these types, a combination of immunohistochemistry (IHC) markers, including proliferative activity of tumor cells, estimated by Ki67 labeling index is used. Clinical studies are frequently based on IHC performed on tissue microarrays (TMA) with variable tissue sampling. This raises the need for evidence-based sampling criteria for individual IHC biomarker studies. We present a novel tissue sampling simulation model and demonstrate its application on Ki67 assessment in breast cancer tissue taking intratumoral heterogeneity into account.Methods: Whole slide images (WSI) of 297 breast cancer sections, immunohistochemically stained for Ki67, were subjected to digital image analysis (DIA). Percentage of tumor cells stained for Ki67 was computed for hexagonal tiles super-imposed on the WSI. From this, intratumoral Ki67 heterogeneity indicators (Haralick’s entropy values) were extracted and used to dichotomize the tumors into homogeneous and heterogeneous subsets. Simulations with random selection of hexagons, equivalent to 0.75 mm circular diameter TMA cores, were performed. The tissue sampling requirements were investigated in relation to tumor heterogeneity using linear regression and extended error analysis.Results: The sampling requirements were dependent on the heterogeneity of the biomarker expression. To achieve a coefficient error of 10 %, 5–6 cores were needed for homogeneous cases, 11–12 cores for heterogeneous cases; in mixed tumor population 8 TMA cores were required. Similarly, to achieve the same accuracy, approximately 4,000 nuclei must be counted when the intratumor heterogeneity is mixed/unknown. Tumors of low proliferative activity would require larger sampling (10–12 TMA cores, or 6,250 nuclei) to achieve the same error measurement results as for highly proliferative tumors.Conclusions: Our data show that optimal tissue sampling for IHC biomarker evaluation is dependent on the heterogeneity of the tissue under study and needs to be determined on a per use basis. We propose a method that can be applied to determine the sampling strategy for specific biomarkers, tissues and study targets. In addition, our findings highlight the benefit of high-capacity computer-based IHC measurement techniques to improve accuracy of the testing

    Bimodality of intratumor Ki67 expression is an independent prognostic factor of overall survival in patients with invasive breast carcinoma

    Get PDF
    Proliferative activity, assessed by Ki67 immunohistochemistry (IHC), is an established prognostic and predictive biomarker of breast cancer (BC). However, it remains under-utilized due to lack of standardized robust measurement methodologies and significant intratumor heterogeneity of expression. A recently proposed methodology for IHC biomarker assessment in whole slide images (WSI), based on systematic subsampling of tissue information extracted by digital image analysis (DIA) into hexagonal tiling arrays, enables computation of a comprehensive set of Ki67 indicators, including intratumor variability. In this study, the tiling methodology was applied to assess Ki67 expression in WSI of 152 surgically removed Ki67-stained (on full-face sections) BC specimens and to test which, if any, Ki67 indicators can predict overall survival (OS). Visual Ki67 IHC estimates and conventional clinico-pathologic parameters were also included in the study. Analysis revealed linearly independent intrinsic factors of the Ki67 IHC variance: proliferation (level of expression), disordered texture (entropy), tumor size and Nottingham Prognostic Index, bimodality, and correlation. All visual and DIA-generated indicators of the level of Ki67 expression provided significant cutoff values as single predictors of OS. However, only bimodality indicators (Ashman’s D, in particular) were independent predictors of OS in the context of hormone receptor and HER2 status. From this, we conclude that spatial heterogeneity of proliferative tumor activity, measured by DIA of Ki67 IHC expression and analyzed by the hexagonal tiling approach, can serve as an independent prognostic indicator of OS in BC patients that outperforms the prognostic power of the level of proliferative activity

    Activated tissue resident memory T-cells (CD8+CD103+CD39+) uniquely predict survival in left sided “immune-hot” colorectal cancers

    Get PDF
    Introduction: Characterization of the tumour immune infiltrate (notably CD8+ T-cells) has strong predictive survival value for cancer patients. Quantification of CD8 T-cells alone cannot determine antigenic experience, as not all infiltrating T-cells recognize tumour antigens. Activated tumour-specific tissue resident memory CD8 T-cells (TRM) can be defined by the co-express of CD103, CD39 and CD8. We investigated the hypothesis that the abundance and localization of TRM provides a higher-resolution route to patient stratification.Methods: A comprehensive series of 1000 colorectal cancer (CRC) were arrayed on a tissue microarray, with representative cores from three tumour locations and the adjacent normal mucosa. Using multiplex immunohistochemistry we quantified and determined the localization of TRM.Results: Across all patients, activated TRM were an independent predictor of survival, and superior to CD8 alone. Patients with the best survival had immune-hot tumours heavily infiltrated throughout with activated TRM. Interestingly, differences between right- and left-sided tumours were apparent. In left-sided CRC, only the presence of activated TRM (and not CD8 alone) was prognostically significant. Patients with low numbers of activated TRM cells had a poor prognosis even with high CD8 T-cell infiltration. In contrast, in right-sided CRC, high CD8 T-cell infiltration with low numbers of activated TRM was a good prognosis.Conclusion: The presence of high intra-tumoural CD8 T-cells alone is not a predictor of survival in left-sided CRC and potentially risks under treatment of patients. Measuring both high tumour-associated TRM and total CD8 T-cells in left-sided disease has the potential to minimize current under-treatment of patients. The challenge will be to design immunotherapies, for left-sided CRC patients with high CD8 T-cells and low activate TRM,that result in effective immune responses and thereby improve patient survival
    corecore